STATUS OF CERES CLOUD PRODUCTS

Patrick Minnis, Bing Lin

NASA Langley Research Center

Sunny Sun-Mack, Qing Trepte, Walt Miller, Yan Chen Alice Fan, Sharon Gibson, Ricky Brown

SAIC

Dave Doelling, Mandy Khaiyer, Doug Spangenberg

AS&M, Inc.

Xiquan Dong

University of North Dakota

http://lposun.larc.nasa.gov/~cwg/

p.minnis@nasa.gov

CERES Science Team Meeting, Hampton, VA
November 1-3, 2005

CERES Cloud Products

- Terra MODIS processed as Edition 2b
 - through June 2005
- Aqua MODIS processed as Edition 1a
 - through March 2005
- TRMM VIRS processed through July 2001
 - plan to process all of it with latest edition & faux flux
- Edition 3 will start after V004 completes
 - expect beta runs in June 2006

CALIBRATION MONITORING

- Aqua vs Terra (match in polar regions only)
- MODIS vs CERES

EXAMINE RELATIVE TRENDS IN IMAGER CHANNELS

VISIBLE

Compute slope for each month

Monitor slope variation

EXAMINE RELATIVE TRENDS IN IMAGER CHANNELS

VISIBLE

Monitor offset variation

Monitor bias

INTERCALIBRATIONS Comparison of CERES SW and Aqua MODIS 0.635 μ m, July 2002 - Mar 2005

Slope of CERES vs MODIS: SW vs 0.64 μ m

Terra & Aqua MODIS may trend relative to each other

Terra darker than Aqua by 1.2% at start of 2003

Solar Reflectance Channels

EXAMINE RELATIVE TRENDS IN IMAGER CHANNELS

3.8 *µ*m

Daytime blape

Night blape

Comparison of CERES LW and MODIS 3.78 μ m, Night, 2000 - 2005

Terra FM1: suggestive of trend

Aqua FM4: no trend

Aqua colder than Terra => more LW for a given radiance

Impact of Version 5 on Cloud Properties Using Current Algorithms

EXAMINE RELATIVE TRENDS IN IMAGER CHANNELS

12 *µ*m

Night slope

Night bias

Impact of Version 5 on Cloud Properties Using Current Algorithms

Trend lines of $11\mu m$ vs LW/Window Regressions, *Terra* Mar 2000 - Mar 2005

FM 1: => daytime decreasing trend, night flat SW ?

Terra MODIS Version 5

- Each channel calibration slightly different than Version 4
 - supposedly better
- Initial test run for several days for comparison with V004

Future for Version 005

- Complete analysis over all seasons
- Alter polar thresholds

NIGHTTIME CLOUD AMOUNT, July 30, 2005

V005 corrections applied to make V005 look like V004
 large difference

NIGHTTIME CLOUD AMOUNT, July 30, 2005

No V005 corrections applied V004

=> minimal difference: leave it alone?

SUMMARY OF TERRA-AQUA CONSISTENCY

- Cloud fractions very consistent in pattern and magnitude
 - some differences over poles (2.13 vs 1.6 μ m)
 - night most consistent
 - but decrease over polar plateaus hurts flux estimates
- More ice clouds from Aqua
 - probably thin cirrus and LBTM impact, some diurnal
 - lower ice OD, worse over poles
- Lower water cloud heights, higher ice cloud
 - some diurnal, some thin cirrus check
- Otherwise very consistent retrievals
 - thin cirrus check needs more investigation

VALIDATION

- New Results for Aqua
- More GOES proxy comparisons

Validation of Cloud Amount (ASOS Comparisons) Terra example

Well-matched in many areas, except near edges and when cirrus are the only cloud

NASA

May be possible only via statistics for mid-low level clouds

Comparison of Aqua Low Cloud Heights over SGP,

Cloud-top temperature is unbiased

so method for selecting height remains unsatisfactory!

Aqua High Cloud Heights over the SGP

On average, Aqua cloud effective heights in thin cirrus fall between the base and center of the cloud Validation of CERES Cloud Optical Depth (Stratus)

ARM SGP, VIRS 1998; MODIS 2000-2001

Excellent correspondence between CERES and surfacederived optical depths over ARM SGP site

Validation of CERES Cloud Droplet Size (Stratus)

ARM SGP, VIRS 1998; MODIS 2000-2001

CERES average droplet sizes within ± 1 µm of surface-based values over ARM SGP site

Aqua Validation

LWP over ARM SGP site, July 2002-July 2004

• LWP:

VIRS + 16%

 $(r^2 = 0.96)$

Terra - 18%

 $(r^2 = 0.88)$

Aqua + 28%

 $(r^2 = 0.89)$ opt depth mainly

Standard errors ~ 50%

Aqua Validation

MODIS *vs* AMSR LWP

March 2005

Tc > 273 K

Aqua Validation

AMSR - VISST LWP March 2005, Tc > 273 K

AMSR retrieving much larger values over open ocean

Aqua LWP Zonal Means March 2005, Overcast Liquid Water

Mean Differences

AMSR - Lin algo

EOS - AMSR Wentz algo

CERES - VISST

MODIS - MYD06

CERES < all others in Tropics

CERES < MYD06 everywhere, 10% solcon dif Differences between MW algos as large as AMSR-VISST

Aqua Mean Effective Radius March 2005, **Overcast Liquid** Water

r_e

40

32

24

16

 $r_e(AMSR) = 0.75*LWP(AMSR)/\tau(VISST)$

Radius differences as large as 9 μ m in some areas

WATER DROPLET EFFECTIVE RADIUS, *Terra*, October 2003 μ m **CERES Ed2** 10 **MODIS results resemble AMSR retrievals** 12 Is $r_e > 18 \mu m$ a typical monthly mean over open ocean? 14 16 Is AMSR biased? 18 Still some work left on AMSR calibrations MOD08 **MODIS Team** 20 22 24

Terra Validation

LWP over ARM AMF site, Pt. Reyes, CA

Feb 2005-June 2005

Expect Aqua to be greater than surface since $r_e(Aqua) > r_e(Terra)$

MODIS LWP Validation by GOES Proxy

Using the same algorithms and GOES calibrated against MODIS, we obtain similar results over different areas:

Aqua Cirrus at the ARM SGP, 2002

Apparent underestimate of particle size, overestimate of τ and IWP -

No attempt at parallax or wind strip

COMPARISON WITH SURFACE RADAR RETRIEVALS OF THIN CIRRUS

Terra MODIS, ARM SGP

(see Mace et al. 2005)

Comparison of GOES Optical Depth Retrievals at Night Over SGP with Retrievals from AERI on Proteus, TX2002, 29 Nov 2002

DeSlover et al., JTech, 2005

Comparison of GOES Daytime Cirrus Retrievals Over Texas with Retrievals from AERI & NAST-I on Proteus, AFWEX, 24 Dec 2004

DeSlover et al., JTech, 2005

Comparison of Ice Particle Sizes & Optical Depth WB-57 Flight During MidCiX, Apr 22, 2004

Summary of Preliminary In Situ - Satellite Cloud Opt Depth Retrievals, MidCiX

From Jay Mace, U Utah

Date	Time	CAS and CIP		СРІ	CIN	GOES	MODIS	Remark
		Data	Fit					
4/19	1958- 2002	5.38	7.22	5.33	8.46	40.4	None	Low Clouds
4/22	1828- 1843	2.79	2.51	3.49	3.3	6.9	None	Low Clouds
	1849- 1908	3.82	3.68	5.99	3.14	5.9	None	
4/27	1736- 1741	4.07		14	4.75	3.41	1.9	Variable Clouds Clear Below No CIP
	1746- 1756	2.34		9	2.42	3.54	1.4	
5/2	1910- 1917	3.75		None	4.82	4.83	4.05	Clear Below No CIP down
	1919- 1924	5.88	6.02	None	7.42	5.01	4.63	

CAS/CIP in reasonable agreement with CIN

• Aircraft measurements agree reasonably with satellite optical depth - differences are consistent with low clouds and cloud field variability

Proposed Edition 3 Cloud Algorithm Changes

- Account for V005 changes, use calibration information
- Hi-res cloud detection and retrieval for low clouds (250-m into 1 km)
- Multilayer cloud detection & retrieval
- Smoother polar transition
- Improved thin cloud opt depth, phase, and heights
- Refined thin cirrus detection & dust/cloud discrimination
- Improved clear-sky maps & general mask/retrieval & calibration upgrades
 - use of MODIS surface albedo & aerosols?
 - use of scene-dependent snow albedos

Use 250-m VIS data to determine clouds only to improve cumulus det

History: Nguyen, L., et al., 2002: Fresolution imager data. *Proc. 11th AM*

GOES-8 4 and 1 -km pixels

Multilayer cloud detection & retrieval

• Use MODIS channels to detect multilayer clouds & retrieve layer cloud properties

History: Kawamoto et al. 2002; Pavlonis & Heidinger; Chiang & Li, 2005; Minnis et al., 2005; Fall 04/Spring 05 CERES STMs

April 19, 2004 Terra

Use of nighttime algorithm to derive thin cloud optical depths

And refine VISST parameterization

High Cloud Opt Depth from SIST

OTHER ISSUES TO BE HANDLED IN ED3

- Smoother polar transition
- Refined thin cirrus detection, new channels
- mixed phase clouds in Arctic (flag only)
- General mask/retrieval & calibration upgrades
- 1.6 vs 2.1 μm: 2.1 only?
- Improved clear-sky
 - **Use MODIS clear-sky or our maps**
 - code changes in VIS parameterization
- Streamline code=> faster
- Team's suggestions

